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above consists in the use of the key property of the set of resonance tori of the unperturbed 

problem, 
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We examine a class of functions of higher than first order in smallness in the 
equations of perturbed motion, for which the stability problem in critical cases is 
completely solved in a linear approximation. More precisely, we give a general- 

ization of Malkin’s theorem on the singular case of several zero roots to the case 
when the characteristic equation has pure imaginary roots. We consider the in- 
stability question. 

Let us 
the functions 

consider a system of differential equations of perturbed motion (1. l),where 
Yt and X, satisfy conditions (1,2), (1.3) 

(Ll) 

(1.2) 

(1.3) 
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while the roots of the equation 

det il Pi j - 16ij 11 = 0 0.4) 

have negative real parts. Malkin’s theorem [l, 21 is valid under these conditions: the 
unperturbed motion yi = x, = 0 is Liapunov-stable and exponentially-asymptotically 
x-stable. It is not difficult to see that the stability of the unperturbed motion of system 

(1.1) is of the same nature as the stability of the trivial solution of the linear system 
obtained from (1.1) by discarding the functions Y i and X,. Thus, Malkin’s theorem 
can be stated in the following manner : if the zero sofution of the linear system (1.1) 

with Y; z X, 3 0 is Liapunov-stable and exponentially-asymptotically x-stable, 
then the stability of the zero solution of the original system (1.1) is of the same nature 

for every function Yi, X, satisfying conditions (1.2), (1.3). 

The characteristic equation for the linear system (1.1) with yi ZG X, z 0 has ,Q 

zero roots with prime elementary divisors and B roots with negative real parts. In this 

connection we pose the following problem : is Malkin’s theorem preserved when the 
characteristic equation of the first-approximation system has pure imaginary roots in 
addition to zero roots. It happens that this question has an affirmative answer both in 
the case of stability as well as in the case of instability. 

2. Let the equations of perturbed motion have the form 

y’ = Qx + Ry + Y (4 x, y), x’-Px+X(t,x,y) (2.1) 

where x E R”, y E R” and P, Q, R are constant matrices of the appropriate or- 
ders. The linear-appoximation equations for system (2.1) are 

s’= Qx+Ry, x’ = Px (2.2) 

Theorem 1. Assume that the zero solution of system (2.2) is Liapunov-arable and 
exponentially-asymptotically x-stable. Then the unperturbed motion of system (2.l)is 
Liapunov-stable and exponentially-asymptotically x-stable with any functions Y, X 

satisfying conditions (1.2) and (1.3). 
Note. As we see from the theorem’s statement, the real parts of the roots of Eq, 

(1.4) are negative, while the roots of the equation 

det 11 R - hE 11 = 0 (2.3) 

may have negative real parts, may vanish, or be pure imaginary. In the last two cases a 
number of solution groups equal to the root multiplicity are associated with multipleroots, 
and resonance relations are admissible between imaginary roots, 

Proof [l, 21. By the property of the roots of Eq. (1.4) there exists a positive-definite 
quadratic form V fx) satisfying the equation grad V (x) . Px = - 11 x 112. Having 
made the substitution 

5, = eat x,, M: = const. > 0 (2.4) 

we transform the second group of equations in (2.1) to 

3’ = (P + stE) 5 + 6+X (t, e-at& y) (2*5) 

where E is the unit matrix. The time derivative of function v (81, by virtue of (2.5), is 

V’ (g) = - 11 g [I2 + 2aV (g) + eat grad V (Q X (t, e-@& y) (2.6) 
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We choose a SO small that the form - (1 t !I2 $ 2 av (6) is negative definite. Byvir- 

tue of (1.3) there exists fi > 0 such that the derivative (2.6) is nonpositive in the regidn 

t > 07 II r; II < I% II Y II < B (2.V 

Let us consider an arbitrary solution E (t, go, yo), y (t, go, yo) with initial pertur- 
bations (for t = 0) from the region 

llMl<~~ llYOll<~~ S<P (2.8) 

For this solution the conditions 

Ilg(t, go7 Yo)K P3 IIYVT bl YOK P (2.9) 

are satisfied at least on some interval (0, T). For all t E (0, T) we have T/’ (g (t, go, 

YO>> < 0 and, consequently. V (c (t, go, Yo)) < V (Eo). Since form V is positive 
definite, there follows the inequality 

II g (t, EOl Yo) II < A t E (07 T) (2.10) 

where A is arbitrarily small if 6 is fairly small. By virtue of (2.4) 

II x (6 x0, y0) II< Ae-a*, t E (0, T) (2.11) 

follows from (2.10) (x0 = 50) . Condition (1.3) and inequality (2.11) yield the esti- 
mate 

11 Y(t, x(t, x0, yo), y (t, x0, yo))II < AMe-"', t E(O, T), M = const (2.W 

The function Y (t, x0, yo), is a solution of the system of linear inhomogeneous equations 

y' = Ry + Qx(t, x0, yo) + Y(h x(h x09 Yoh Y(4 x0, yo)) (2.13) 

and can be represented by the Cauchy formula p] 

Y P, xot Yo) = u @> Yo + (2.14) 
t 

s u (t - a> [Qx (r, x09 Yo) + y (r, x (r, x07 Yoh Y (z, x09 YONI df 
0 

where u (t) is the fundamental matrix of solutions of the linear system 

y’ = Ry (2.15) 

The stability of the zero solution of system (2.15) follows from the stability of the zero 
solution of system (2.2) ; but in such case [4] 

I] U (t) II < N = const for t > 0 (2.16) 

On the basis of (2.11). (2.12) and (2.16), from (2.14) we obtain 

II Y (tl x07 YO) II< N 1) YO II + (N II Q [I A + NAM) { e-ar dz = 
(2.17) 

N/I ~011 f ANc~ (II Q (I + W(1 -e-at)< Ariyo/j + ANa-l(II Q (I + M) 

Let E be an arbitrarily small number and 0 ( E < p. We choose the 6 in (2.8) so 
small the the inequality A < E is satisfied and that the right-hand side of (2.17) is less 
than E. From (2.10) and (2.17) it follows that the inequalities 
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IIW, go7 YoNI<G llY(k to7 Yo)ll<e (2.18) 

are satisfied throughout the time interval during which inequalities (2.9) are satisfied. 

But since E < p, inequalities (2.18) are fulfilled for all t > 0. Consequently, the un- 
perturbed motion is stable relative to g? y, whence the required result follows by vir- 

tue of (2.4). 
Theorem 2. Assume that the zero solution of system (2.2) is exponentially-asymp- 

totically x-stable and y-unstable. Then the unperturbed motion of system (2.1) is y- 
unstable for any functions Y, X satisfying condition (1.2). 

Notes. 1) Condition (1.3) is not used in Theorem 2. 
2) Under the hypotheses of Theorem 2 the y-instability of the zero solution of system 

(2.2) is equivalent to the existence in Eq. (2.3) of multiple roots with zero real parts 

and nonprime elementary divisors or of roots with a positive real part. 
Proof. From the theorem’s hypotheses it follows that the zero solution of system 

(2.15) is unstable. Consequently, system (2.15) has the solutions y = y (t, ys) with 
arbiaarily small Ijy,,II, leaving the region [[ y II< H = const in the course of time. 

But then, by virtue of condition (1.2) system (2.1) has the solutions (y = y (t, ys), 
x G 0) with arbitrarily small initial conditions, which in the coutse of time leave the 

region [! y I[ i< H. The theorem is proved. 
From Theorems 1 and 2 follows 

Theorem 3. Let the equations of perturbed motion be of the form (2. l), the real 
parts of the roots of Eq. (1.4) be negative and the functions Y and X satisfy conditions 
(1.2) and (1.3). Then the question of the stability of the unperturbed motion of system 
(2.1) is completely resolved by the linear approximation (2.2): if the zero solution of 
system (2.2) is Liapunov-stable, the unperturbed motion of system (2.1) is Liapunov- 
stable and exponentially-asymptotically x-stable ; if the zero solution of system (2.2) 
is y-unstable, the unperturbed motion of system (2.1) is y-unstable. 

3. The results obtained are easily carried over to the stability problem with respect 
to a part of the variables [S] in the linear approximation [6]. Let the equations of per- 

turbed motion have the form 

Y'=Qx+~y+y(t,x,y,z), x’=PxfX(t,x,y,z) (3.1) 
z’ = Z (t, x, y, z), x E R”, y E Rk, z E R’ 

We assume that the solutions of system (3.1) are z-continuable and that conditions(3.3), 
(3.4) are satisfied in region (3.2) 

t>o* II4Kh7 IIYll<h llzll<=J (3.2) 

y (G 0, y, 4 = 0, x (t, 0, y, z) S 0 (3.3) 

II y (4 x. Y9 4 II + II x (6 x, Y, 4 II -4 

II x II -40 as IIXII + IIY II-+0 (3.4) 
G=o 

Ilzll<m 

Analogously to the preceding we can prove 
Theorem 4, Let the equations of perturbed motion be of the form (3. l), the real 

parts of the roots of Eq. (1.4) be negative and the functions Y and X satisfy conditions 
(3.3) and (3.4) in region (3.2). Then the question of stability relative to (x, y) of the 
unperturbed motion of system (3.1) is completely resolved by the linear system (2.2): 
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if the zero solution of system (2.2) is Liapunov-stable, the unperturbed motion of system 
(3.1) is stable relative to (x, y) and exponentially-asymptotically x -stable (in-the- 
large with respect to z,, PI); if the zero solution of system (2.2) is y-unstable, the un- 
perturbed motion of system (3.1) is y-unstable. 

Note. If we know beforehand that the solutions of system (3.1) are z -bounded uni- 
formly with respect to {to, x,,, y,,, zO} [S] , then Theorem 4 remains in force if conditions 
(3.3) and (3.4) are satisfied only in the region of the z-boundedness [6]. 

4. Example 1. We consider a holonomic mechanical system with IZ + k gene- 
ralized coordinates (ql, . . ., qn, Q1, . . ., Qh.) = (q, Q) and with time-independent coup- 
lings, who,, kinetic energy I’ and quadratic part U, of the potential energy are 

T = T(l) (q, Q, q’) _I- T(“) (Q’) , 11% =- up’ (q) $_ ,+‘) (Q) 
2 

Here U,(l) (q) is a positive-definite function. We assume that on the system there act 

forces gyroscopic with respect to q’ and Q’ , dissipative forces with Rayleigh function 

f (q1’ 7 * * .f q,‘) which is taken to be a positive-definite quadratic form in its arguments, 
as well as certain nonconservative forces of a higher than first order of smallness, so that 
the equations of motion of the system being examined have the form 

d a+) aT(" au(l) n 
-__ 
dt aq., r-=- ~ t ~ fii,~‘, - ~ + Fi (Sl q’( Q, Q'), (4.1) 

z s=, 2 
i - 1 , ( n; gi, == - gqi 

d arc”) aT(l) aup h‘ 

dtaQ’j-- 8Qj -= - aQj - ‘C 2 GjsQ‘, + Qj (9, q’v Q r Q') 9 

S=l 

i=l,..., k; Gj, zz - Gsj 

where the functions Fi and @j do not contain linear terms and satisfy the condition 

Fi (O,Ot Q, Q’) EF mj (070, Q, Q') s o (4.2) 

In the linear-approximation equations for system (4.1) the variables (q, q’) and (Q, Q’) 

separate rl 877:) 
__Z - 

auk’ ; 
+ 2 fiigs’ - $ , TF) z= I”(‘) (0, 0, q’), (4.3) 

s-1 1 i=l,...,n 

-_ 
+ i CjsQ,'j j =I,...,12 (4.4) 

$=I 

the equilibrium position q = q’ = 0 of system (4.3) is exponentially-asymptotically 
stable. 

On the basis of Theorem 3 we conclude that if the form U,@) (Q) is positive definite, 
then the equilibrium position qi = gi’ = Qj = Qj’ = 9 of system (4.1) is Liapunov-sta- 
ble and exponentially-asymptotically stable relative to q, q’; however, if lJ,(*) (Q) takes 
negative values and all Gjs = 0, then the equilibrium position qi = ‘/i’ = Qj = Qj’ = 6 
of system (4.1) is unstable relative to Q, Q’. 

Notes. 1) This conclusion remains in force if the function f is sign-constant (the 

dissipation is partial with respect to ‘I]’ , . . ., qn’ ), but [9] the equilibrium position 
q = q’ = 0 of system (4.3) is asymptotically stable. 

2) Condition (4.2) is satisfied for conservative forces if the system’s potential energy 
has the form 
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U (St Q) L= Uf’ (9) + Uf) (Q) + CJ’ (q, Q) 

where U’ are terms of order of smallness higher than second and dU’ / aqi z au’ f 

aQi z 0 for q = 0. 
Example 2. Let us consider a special case of Example 1. Let the system be re- 

duced to normal coordinates [lo] zl, . . ., x,, X1, . . ., Xk, and let the equations of 
motion be 

2. z - * + Fi (x, x’, X, X.1, i=l,...,n; gi, = - g,i (4. 5) 

Xj” = - AjXj -t ~ Gj,Xs’ + ~j (X, X', X, x’), i = I, _ . . , k; Gjs _ _ Gsj 

where f (zl’, . . ., 2,‘) is a positive-definite quadratic form. We assume that all hi > 0, 

while the functions >i and Oj do not contain linear terms and satisfy the condition 

Fi (0, 0, X, X’) E % (0, 0, X, X*) I 0. On the basis of Theorem 3 we conclude that if 
all Rj > 0, then the equilibrium position zi = xi- = Xj = Xj’ = 0 of system (4.5) is 

Liapunov-stable and exponentially-asymptotically (x, x’)- stable ; if Aj 5 0 exists and 
all Gjs = 0, then the equilibrium position zi = xi’ = Xj = Xj’ = 0 Of system (4.5) is 
unstable relative to X, X’. 

Example 3. Example 1 can be extended to the stability problem for steadystate 
motions [ll]. Let us assume that for the given values of the cyclic integrals pa = c& 

the position coordinates qj (i = 1, . . . , k) separate into two groups : ql, . . . , qm and 

qnw1 - * -) Qk ; the part Rs , quadratic relative to the positional velocities of the Routh 
function H is of form (4.6), while the potential energy of the reduced system is ofform 

(4.7) 
Rz = Rt’(ql, . . .,qk,ql’,...,q,‘)+R~‘(q,,,,...,q,) (4.6) 

Here W2(r) and W,“) are auadratic forms in their arguments, the first of which is positive 
definite, w’ are terms of higher than second order of smallness, dW’ / aqi E 0 (i = 1, 

. . ., k) for q1 = . . . -I qm = 0. 

Further, on the system let there act dissipative forces with Rayleigh function f (ql’, 
. . ., ha’) and certain nonconservative forces of higher than second order of smallness, 
not having values pa, while the gyroscopic forces that arise due to the presence of terms 
linear in qj’ in the Routh function, are such that the equations of motion [ll] take the 
form d a$’ a$’ aw(l) m 

zagi’- &7i =- a,: - + 2 g&Is - $.+Fit i=l,...,m (4-8) 
s=1 1 

d a@ a@) aJ,+) k 
_--_=- 
dt aqi. aqi 

$-+ 2 gisqs* +F~, i-z m-+1,. . ,k 
1 s=m+1 

Here the functions Fi (i = 1, . . ., k) do not contain linear terms and Fi z 0 (i = 1, 

. * ., k) for q1 = qr’ = . . . = qm = qm’ = 0. 

On the basis of Theorem 3 we conclude that if form W2(*) is positive definite, then 

the steadystate motion (p, = car qj = qj’ = 0) is stable relative to ql, . . ., qk, ql’, 

. . . . qk’ and exponentially-asymptotically stable relative to ql, . . ., qm, ql’, . . ., qm’ 
at least for perturbations not having the values pa = ca; if IVat”’ takes negative values, 
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while gyroscopic terms are absent in the second group of Eqs. (4.8). then the given steady- 
state motion is unstable relative to ‘I*+~, . . ., pk, Q~+~, . . ,, qk’. 

Example 4. Let us consider the connection between the results obtained in Sect.2 

and the critical cases of one pair and of several pairs of pure imaginary roots. Let the 
equations of perturbed motion have the form 

xs’ = PSl$ + * * * + Pm"71 + X&x, ?/, 21, * * .t .qJ, s= l,...,n 
ZE’ = ql13Jl + . . * +91&t + Pl" + (319 + *~b, Y? 519 * . '3 4 (4*9) 
Y’ = '1214 + * * + Qzn"n + PZX I- w + I7 6% !I* 219 . * '7 %A 

and let the roots of Eq. (1.4) have negative real parts, the equation 

1'1 -- h q1 

Pz 
qz-- -0 

I 

have a pair of pure imaginary roots, and X, Y and Xs be analytic functions whose ex- 

pansions commence with terms of no lower than second order and which satisfy the con- 
dition 

X(x, Y, 0, . . ., 0) -. Y (z, y, 0, . . .) 0) -_ xs (I, !/, 0, . . ., 0) _I 0 (4.10) 

From Theorem 1 it follows that the unperturbed motion of system (4.9) is Liapunov-sta- 

ble and exponentially-asymptotically stable relative to .zl, . . ., xn. By virtue of (4.10) 
the stability with respect to 5, Y is not asymptotic (it is sufficient to set zso = 0, zco2 + 
yo2 # 0); consequently, we have to deal with a special case [2] of the critical case of a 

pair of pure imaginary roots. 
Analogous conclusions are valid in the critical case [12] of several pairs of pure ima- 

ginary roots independently of the presence of resonance relations between the imaginary 
roots, 

The author thanks V. V, Rumiantsev for attention to this paper. 
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The stability of motion with respect to a part of variables is investigated for the 

critical case of a single zero root. The criterions of stability and instability are 
obtained. 

1. Consider the system of differential equations of perturbed motion 

dxildt = Xi(X, nee) X,), i = 1,. . ., n U.1) 

We shall investigate the problem of stability of unperturbed motion 51 = 0 (i = 1, 
. . . . nf with respect to xi, . . . , x, (m > 0, n=m+p, p > 0). We denote 
these variables by Yi = x1 (i = 1, ..,, m), and the remaining ones by zf = z,+~ (j = 
1, .,. ., p) 11, 21. Let the functions Xf represent power series expanded in the powersof 
yi (i = 1, ..*, m) and 21 (j = 1, . . . . p) and convergent in the region 

lYiIGh? i=i,...,m, IZjf\(H<W, iz~,.._,p (1.2) 

where h and H are certain constants. 
Now the equations of perturbed motion (1.1) assume the form 

(1.3) 

where ait, b,l and chj are constants, Yi and Zk are functions of the variables y,, 

***I Y,, 21, ‘.., zpwhich arc expanded in the region (1.2) into power series in these va- 

riables with the first terms of at least second order. The variables zj {j = 1, . . . , p) 

are always bounded (Condition A), since they belong to the region (1.2). This condition 

represents the starting assumption in the investigation of (1.3). 
Let m 


